Skaidant kvaratinį trinarį dauginamaisiais
- x2−x−6x2−4x+3 =(x−3)(x+2)(x−1)(x−3) =x+2x−1
x2−4x+3=0
D=b2−4ac=16−4⋅1⋅3=16−12=4
x1=2a−b+D=24+2=3
x1=2a−b−D=24−2=1
x2−x−6=0
D=b2−4ac=1−4⋅1⋅(−6)=1+24=25
x1=2a−b+D=21+5=3
x1=2a−b−D=21−5=−2
- 4x2+27x−7x2+3x−28 =4(x−0.25)(x+7)(x+7)(x−4) =4x−1x−4
x2+3x−28=0
D=b2−4ac=9−4⋅1⋅(−28) =9+112=121
x1=2a−b+D =2−3+11=4
x2=2a−b−D =2−3−11=−7
4x2+27x−7=0
D=b2−4ac=272−4⋅4⋅(−7)=841 //29
x1=2a−b+D =2⋅4−27+29 =0.25
x2=2a−b−D =2⋅4−27−29 =−7
0.5y2−26y+9y2−26y−18 =(y−36)(y−6)(y−36)(y+6) =y−6y+6
y2−26y−18=0
D=b2−4ac=(26)2+4⋅1⋅18=24+72=96
y1=2a−b+D =226+46 =266 =36
y2−46y+18=0
D=b2−4ac=(46)2−4⋅1⋅18=16⋅6−72=24
y1=2a−b+D =246+26 =266 =36
y2=2a−b+D =246−26 =226 =6