Trupmenos

Trupmeninių reiškinių prastinimas

  1. 8xy12c=2xy3x\dfrac{8xy}{12c} = \dfrac{2xy}{3x}

  2. 4a2p3a7p3=43a5p2\dfrac{4a^2 p}{3a^7 p^3} = \dfrac{4}{3a^5 p^2}

  3. 4(x+y)5(x+y)=45\dfrac{4(x+y)}{5(x+y)} = \dfrac{4}{5}

  4. (a2)3a2=(a2)21=a24a+4\dfrac{(a-2)^3}{a-2} = \dfrac{(a-2)^2}{1} = a^2 - 4a + 4

Trupmenų daugyba ir dalyba

  1. 3x22m5m34x2=15m28x2\dfrac{3x^2}{2m} \cdot \dfrac{5m^3}{4x^2} = \dfrac{15m^2}{8x^2}

  2. x2916x:4x+1214\dfrac{x^2 - 9}{16x} : \dfrac{4x+12}{14} =x2916x144x+12= \dfrac{x^2 - 9}{16x} \cdot \dfrac{14}{4x+12} =(x3)(x+3)16x144(x+3)= \dfrac{(x-3)(x+3)}{16x} \cdot \dfrac{14}{4(x+3)} =14(x3)64x=7(x3)32x=7x2132x= \dfrac{14(x-3)}{64x} = \dfrac{7(x-3)}{32x} = \dfrac{7x-21}{32x}

  3. 5(254x2)3x:2x59\dfrac{5(25-4x^2)}{3x} : \dfrac{2x-5}{9} =5(52x)(5+2x)3x92x5= \dfrac{5(5-2x)(5+2x)}{3x} \cdot \dfrac{9}{2x-5} =45(52x)(5+2x)3x(2x5)= \dfrac{45(5-2x)(5+2x)}{3x(2x-5)} =45(2x5)(5+2x)3x(2x5)=\dfrac{-45(2x-5)(5+2x)}{3x(2x-5)} =45(5+2x)3x= \dfrac{-45(5+2x)}{3x} =15(5+2x)x= \dfrac{-15(5+2x)}{x} =30x75x= \dfrac{-30x - 75}{x}

  4. x210x+253x12x35x\dfrac{x^2 - 10x + 25}{3x} \cdot \dfrac{12x^3}{5-x} =(x5)23x12x35x= \dfrac{(x-5)^2}{3x} \cdot \dfrac{12x^3}{5-x} =(x5)2x4x35x= \dfrac{(x-5)^2}{x} \cdot \dfrac{4x^3}{5-x} =(5x)2x4x35x= \dfrac{(5-x)^2}{x} \cdot \dfrac{4x^3}{5-x} =5x14x21= \dfrac{5-x}{1} \cdot \dfrac{4x^2}{1} =4x2(5x)=20x4x3= 4x^2(5-x) = 20x - 4x^3

Trupmenų sudėtis ir atimtis

  1. 3x2+5xx2=3+5xx2\dfrac{3}{x-2} + \dfrac{5x}{x-2} = \dfrac{3+5x}{x-2}

  2. x35x+24x+75x+2\dfrac{x-3}{5x+2} - \dfrac{4x+7}{5x+2} =x3(4x+7)5x+2= \dfrac{x-3-(4x+7)}{5x+2} =x34x75x+2= \dfrac{x-3-4x-7}{5x+2} =3x105x+2= \dfrac{-3x-10}{5x+2}

  3. 4xx5+x25x\dfrac{4x}{x-5} + \dfrac{x-2}{5-x} =4xx5x2x5= \dfrac{4x}{x-5} - \dfrac{x-2}{x-5} =4xx+2x5= \dfrac{4x-x+2}{x-5} =3x2x5= \dfrac{3x-2}{x-5}

  4. 42x6x+2x29\dfrac{4}{2x-6} - \dfrac{x+2}{x^2-9} =42(x3)x+2(x3)(x+3)= \dfrac{4}{2(x-3)} - \dfrac{x+2}{(x-3)(x+3)} =2x3x+2(x3)(x+3)= \dfrac{2}{x-3} - \dfrac{x+2}{(x-3)(x+3)} =2(x+3)(x3)(x+3)x+2(x3)(x+3)= \dfrac{2(x+3)}{(x-3)(x+3)} - \dfrac{x+2}{(x-3)(x+3)} =2(x+3)(x+2)(x3)(x+3)= \dfrac{2(x+3) - (x+2)}{(x-3)(x+3)} =2x+6x2(x3)(x+3)= \dfrac{2x+6-x-2}{(x-3)(x+3)} =x+4(x3)(x+3)= \dfrac{x+4}{(x-3)(x+3)} =x+4x29= \dfrac{x+4}{x^2-9}

Sudėtingesnių trupmenų prastinimas

  1. Skaidymas dauginamaisiais grupavimo būdu

    1. 4xy+12y4x124xy + 12y - 4x - 12 =4y(x+3)4(x+3)= 4y(x+3) - 4(x+3) =(4y4)(x+3)= (4y-4)(x+3) =4(y1)(x+3)= 4(y-1)(x+3)

    2. x22xc+c2d2x^2 - 2xc + c^2 - d^2 =(xc)2d2=(x-c)^2 - d^2 =(xc+d)(xcd)=(x-c+d)(x-c-d)

    3. 3a23ab2+a2bb33a^2 - 3ab^2 + a^2b-b^3 =3a(a2b2)+b(a2b2)= 3a(a^2-b^2) + b(a^2-b^2) =(3a+b)(a2b2)= (3a+b)(a^2-b^2) =(3a+b)(a+b)(ab)= (3a+b)(a+b)(a-b)

    4. x34x2+3x12x2+3\dfrac{x^3 - 4x^2 + 3x - 12}{x^2+3} =x2(x4)+3(x4)x2+3= \dfrac{x^2(x-4)+3(x-4)}{x^2 + 3} =(x2+3)(x4)x2+3= \dfrac{(x^2 + 3)(x-4)}{x^2 + 3} =x4= x-4

  2. Skaidant kvaratinį trinarį dauginamaisiais

    1. x24x+3x2x6\dfrac{x^2-4x+3}{x^2-x-6} =(x1)(x3)(x3)(x+2)= \dfrac{(x-1)(x-3)}{(x-3)(x+2)} =x1x+2= \dfrac{x-1}{x+2}

    x24x+3=0x^2-4x+3 = 0

    D=b24ac=16413=1612=4D= b^2 - 4ac = 16 - 4\cdot 1 \cdot 3 = 16-12=4

    x1=b+D2a=4+22=3x_1 = \dfrac{-b+\sqrt{D}}{2a} = \dfrac{4+2}{2}=3

    x1=bD2a=422=1x_1 = \dfrac{-b-\sqrt{D}}{2a} = \dfrac{4-2}{2}=1

    x2x6=0x^2-x-6=0

    D=b24ac=141(6)=1+24=25D = b^2 - 4ac = 1 - 4\cdot 1\cdot (-6) = 1 + 24 = 25

    x1=b+D2a=1+52=3x_1 = \dfrac{-b+\sqrt{D}}{2a} = \dfrac{1+5}{2} = 3

    x1=bD2a=152=2x_1 = \dfrac{-b-\sqrt{D}}{2a} = \dfrac{1-5}{2} = -2

    1. x2+3x284x2+27x7\dfrac{x^2 + 3x-28}{4x^2 + 27x - 7} =(x+7)(x4)4(x0.25)(x+7)= \dfrac{(x+7)(x-4)}{4(x-0.25)(x+7)} =x44x1= \dfrac{x-4}{4x-1}

    x2+3x28=0x^2 + 3x - 28 = 0

    D=b24ac=941(28)D = b^2 - 4ac = 9 - 4\cdot 1 \cdot (-28) =9+112=121= 9 + 112 = 121

    x1=b+D2ax_1 = \dfrac{-b+\sqrt{D}}{2a} =3+112=4= \dfrac{-3 + 11}{2}= 4

    x2=bD2ax_2 = \dfrac{-b-\sqrt{D}}{2a} =3112=7= \dfrac{-3 - 11}{2}= -7

    4x2+27x7=04x^2 + 27x - 7 = 0

    D=b24ac=27244(7)=841D = b^2 - 4ac = 27^2 - 4\cdot 4 \cdot (-7) = 841 //29

    x1=b+D2ax_1 = \dfrac{-b+\sqrt{D}}{2a} =27+2924= \dfrac{-27 + 29}{2\cdot 4} =0.25= 0.25

    x2=bD2ax_2 = \dfrac{-b-\sqrt{D}}{2a} =272924= \dfrac{-27 - 29}{2\cdot 4} =7= -7

  3. y226y180.5y226y+9\dfrac{y^2 - 2\sqrt{6}y - 18}{0.5y^2 - 2\sqrt{6}y + 9} =(y36)(y+6)(y36)(y6)= \dfrac{(y-3\sqrt{6})(y+\sqrt{6})}{(y-3\sqrt{6})(y-\sqrt{6})} =y+6y6= \dfrac{y+ \sqrt{6}}{y - \sqrt{6}}

    y226y18=0y^2 - 2\sqrt{6}y - 18 = 0

    D=b24ac=(26)2+4118=24+72=96D = b^2 - 4ac = (2\sqrt{6})^2 + 4\cdot 1 \cdot 18 = 24 + 72 = 96

    y1=b+D2ay_1 = \dfrac{-b+\sqrt{D}}{2a} =26+462= \dfrac{2\sqrt{6}+4\sqrt{6}}{2} =662= \dfrac{6\sqrt{6}}{2} =36= 3\sqrt{6}

    y246y+18=0y^2 - 4\sqrt{6}y + 18 = 0

    D=b24ac=(46)24118=16672=24D = b^2 - 4ac= (4\sqrt{6})^2 - 4\cdot 1 \cdot 18 = 16\cdot 6 - 72 = 24

    y1=b+D2ay_1 = \dfrac{-b+\sqrt{D}}{2a} =46+262= \dfrac{4\sqrt{6}+ 2\sqrt{6}}{2} =662= \dfrac{6\sqrt{6}}{2} =36= 3\sqrt{6}

    y2=b+D2ay_2 = \dfrac{-b+\sqrt{D}}{2a} =46262= \dfrac{4\sqrt{6} - 2\sqrt{6}}{2} =262= \dfrac{2\sqrt{6}}{2} =6= \sqrt{6}